1.量子调控 |
重点研究单分子体系、受限电子体系中量子态(包括电子态、自旋态和光子态)的奇特量子效应及其先进的探测方法和操纵技术。将利用基于扫描探针显微技术和光学技术的单分子科学方法对处于自由状态、衬底表面或复杂凝聚相环境中的单个小分子、原子团簇及生物大分子所具有的特殊的化学物理特性进行研究,研究受限量子单体中电荷的产生、分离、输运等特性,进而实现对其量子态的调控。这些研究将使人们能够直接观测和操纵单个的原子或分子,并对单个分子进行手术和加工。 本学科在该研究方向的特色是物理、化学和材料科学多学科交叉,理论与实验紧密结合,多项研究工作的水平处于国际前沿。 |
2.电子强关联系统 |
电子强关联系统研究是当今凝聚态物理理论和实验研究的一个热点。本方向以典型的电子强关联体系--高温超导材料和巨磁电阻材料的物理机制研究为基点,着重开展研究:磁性与超导电性关系,寻找配对机制;d波载流和极化子输运的强关联问题;微结构调整是如何影响超导电性;解决国际上在磁通动力学上一些未解决的问题。研究巨磁阻材料的载流机制,从双交换和非双交换探索其复杂的导电现象;寻找更满足实际应用需要的cmr材料。 本学科点是国内高tc超导电性研究的重点攻关单位之一,承担863计划、973项目、国家杰出青年基金项目和中科院重点基金项目。 |
3.先进功能材料 |
新型光信息功能材料是新一代信息技术的基础,在高技术和军事领域有着举足轻重的地位。本方向以新型信息材料、光电材料、新型高密度存储材料、新型特种光学材料以及相应器件集成中的基础科学问题为研究内容,侧重研究钙钛矿型过渡金属氧化物信息功能材料、zno高性能薄膜材料、新型光电能源材料、稀土发光材料等,发展和完善材料的制备方法,发展新兴的原位高通量检测技术,研究材料中的能量、电荷传输机制,探索材料结构/微结构及其性能的形成机理,掌握材料性能同结构/微结构的关系以及调控方法,为发展新一代的光电器件提供理论基础和材料支持。 本方向的特色在于性质研究与材料制备相结合、宏观与微观相结合,承担了多项国家和中科院项目,“先进材料研究团队”于2005年获得国家自然科学基金委“创新研究群体”的支持。 |
4.纳米结构与物理 |
本学科方向主要以低维和受限体系如量子点、量子线和二维超晶格为研究对象,侧重于纳米材料的可控制备、结构与特性的表征方法、自组装和功能化技术。将发展和完善纳米尺度的表征与度量技术,设计概念性纳电子学和原理性器件,发展和完善微纳加工与集成技术。通过上述手段构造维度受到限制的各种纳米结构,研究由于电子、光子受限所导致的量子效应和规律,以发现这个崭新领域中的新现象,研究新规律,为人工操纵制备新的量子器件寻求新路。 本学科已经在纳米结构的新型量子效应和单分子器件的设计与制备方面取得若干重要进展,研究成果已在phys. rev. lett.等高水平刊物上发表,并形成了一支具有影响的研究群体。 |
5.凝聚态理论与计算物理 |
凝聚态物理理论和计算凝聚态物理历来是凝聚态物性各分支研究领域所必不可缺的重要方面。主要研究微尺度物质体系的结构和电子结构、纳米和分子器件的输运理论、量子力学计算的新方法和新理论、多体理论和非平衡统计物理、生物分子结构、功能的计算和动力学分析。该研究方向的主要目标是提出新的理论模型,结合采用计算物理方法,从微观角度预测和解释凝聚态物质的各种物性,为发展新材料提供理论依据。 |